A Solid State Of Storage


CPUs and GPUs always get the ticker-tape parades. Increases in processing power, however they may manifest, are always greeted with great fan-fare. We all like to see how much faster those high core-count CPUs crunch through tests like Cinebench, or how the latest pro graphics perform in tests like SPECview, but the unsung hero in system responsiveness is, and for quite a while now has been, the storage technology in a workstation. For years the mechanical hard drive ruled the consumer and professional PC market.

First introduced in 1956 as a way of permanently storing data for easy accessibility, the basic functionality has not changed; rapidly rotating disks or platters, coated by magnetic material, are paired with magnetic heads arranged on a moving actuator arm. These heads read and write data to the platter surfaces in a random-access manner, meaning that individual blocks of data can be stored or retrieved in any order rather than sequentially. While the basic functionality of these drives has largely unchanged in over a half century, the technology used to increase performance and storage size has evolved, all the while delivering smaller and more innovative form factors. From migrating from Parallel ATA (PATA) to Serial ATA (SATA), and introducing technologies like Native Command Queueing, onboard caching, faster on-board processing, to denser platters, increased spindle speeds, and even introducing exotic technologies like helium-filled drives and on-board NAND flash for caching, the mechanical hard drive still has inherent technological limitations that can be detrimental to your workflow.

In this article we’re going to be talking about various storage technologies and their limitations, as well as the technologies that have arisen to address them, including the move SSDs have made from SATA to PCI-E, as well as the migration from AHCI to NVMe. Confused? Don’t be, we’ve got you covered. Before we get started, let’s put some numbers on the board we can talk about, starting with some basic performance characteristics. We’ll discuss each one of them and how it affects you, then we’ll dive into benchmarks that show the right SSD solution can greatly increase workflow efficiency.

Continue reading